论文标题

基于模型的fMRI数据聚类

Penalized model-based clustering of fMRI data

论文作者

DiLernia, Andrew, Quevedo, Karina, Camchong, Jazmin, Lim, Kelvin, Pan, Wei, Zhang, Lin

论文摘要

功能磁共振成像(fMRI)数据已越来越可用,可用于描述功能连通性(FC),即大脑区域中神经元活动的相关性。这种大脑的FC提供了对某些神经退行性疾病和精神疾病的见解,因此具有临床重要性。为了帮助医生有关患者诊断的信息,需要基于FC的受试者进行无监督的聚类,从而使数据能够根据连通性的共同特征将患者分组告知我们。由于FC的异质性甚至在同一组中的患者之间也存在,因此允许主题级别的连通性差异,同时仍在每个组中的患者中汇总信息以描述组级级FC。为此,我们提出了一个随机的协方差集群模型(RCCM),以基于其FC网络的同时聚类主题,估算每个主题的唯一FC网络,并推断共享网络功能。尽管存在使用fMRI数据估算FC或聚类受试者的当前方法,但我们的新贡献是基于大脑的类似FC对聚类或组受试者,同时提供组和受试者级FC网络估计值。 RCCM相对于其他方法的竞争性能通过在各种环境中的模拟来证明,从而提高了受试者的聚类和FC网络的估计。该方法的实用性通过应用于43个健康对照组和61名被诊断为精神分裂症的参与者收集的静止状态fMRI数据集。

Functional magnetic resonance imaging (fMRI) data have become increasingly available and are useful for describing functional connectivity (FC), the relatedness of neuronal activity in regions of the brain. This FC of the brain provides insight into certain neurodegenerative diseases and psychiatric disorders, and thus is of clinical importance. To help inform physicians regarding patient diagnoses, unsupervised clustering of subjects based on FC is desired, allowing the data to inform us of groupings of patients based on shared features of connectivity. Since heterogeneity in FC is present even between patients within the same group, it is important to allow subject-level differences in connectivity, while still pooling information across patients within each group to describe group-level FC. To this end, we propose a random covariance clustering model (RCCM) to concurrently cluster subjects based on their FC networks, estimate the unique FC networks of each subject, and to infer shared network features. Although current methods exist for estimating FC or clustering subjects using fMRI data, our novel contribution is to cluster or group subjects based on similar FC of the brain while simultaneously providing group- and subject-level FC network estimates. The competitive performance of RCCM relative to other methods is demonstrated through simulations in various settings, achieving both improved clustering of subjects and estimation of FC networks. Utility of the proposed method is demonstrated with application to a resting-state fMRI data set collected on 43 healthy controls and 61 participants diagnosed with schizophrenia.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源