论文标题
基于稀疏编码的比例尺和旋转不变点检测器
A Scale and Rotational Invariant Key-point Detector based on Sparse Coding
论文作者
论文摘要
最受欢迎的手工制作的密钥探测器,例如哈里斯角,筛,冲浪,目的是检测图像中的角落,斑点,连接或其他人类定义的结构。尽管对一些几何变换具有稳健性,但意外的场景或不均匀的照明变化可能会大大降低其性能。因此,一种具有上下文变化的新检测器,并且在几何和不均匀的照明变化方面同时具有鲁棒性。在本文中,我们通过将比例尺和旋转不变设计(名为SRI-SCK)纳入最近开发的基于稀疏编码的密钥点检测器(SCK),提出了解决这个具有挑战性问题的解决方案。在不同的情况下,SCK探测器具有灵活性,并且完全不变,而不是仿射强度的变化,但并非旨在处理具有巨大尺度和旋转变化的图像。在SRI-SCK中,使用图像金字塔技术实现了比例不变性,而旋转不变性是通过组合SCK稀疏编码步骤中使用的多个词典的旋转版本来实现的。还提出了用于计算关键点特征量表及其子像素精度位置的技术。三个公共数据集的实验结果表明,实现了显着高的可重复性和匹配分数。
Most popular hand-crafted key-point detectors such as Harris corner, SIFT, SURF aim to detect corners, blobs, junctions or other human defined structures in images. Though being robust with some geometric transformations, unintended scenarios or non-uniform lighting variations could significantly degrade their performance. Hence, a new detector that is flexible with context change and simultaneously robust with both geometric and non-uniform illumination variations is very desirable. In this paper, we propose a solution to this challenging problem by incorporating Scale and Rotation Invariant design (named SRI-SCK) into a recently developed Sparse Coding based Key-point detector (SCK). The SCK detector is flexible in different scenarios and fully invariant to affine intensity change, yet it is not designed to handle images with drastic scale and rotation changes. In SRI-SCK, the scale invariance is implemented with an image pyramid technique while the rotation invariance is realized by combining multiple rotated versions of the dictionary used in the sparse coding step of SCK. Techniques for calculation of key-points' characteristic scales and their sub-pixel accuracy positions are also proposed. Experimental results on three public datasets demonstrate that significantly high repeatability and matching score are achieved.