论文标题
经受参数漂移的时间拖延系统中的瞬态混乱
Transient chaos in time-delayed systems subjected to parameter drift
论文作者
论文摘要
外部和内部因素可能会导致系统的参数随时间而变化,然后才能稳定下来。当参数越过分叉时,这种漂移会导致机制移动。在这里,我们研究了无限尺寸系统的情况:一个时间延迟的振荡器,其时间延迟以较小但不可忽略的速率变化。我们的研究表明,由于这种参数漂移,从混乱的吸引力尖端到具有一定概率的其他状态的轨迹。这导致了瞬态混乱现象的出现。通过使用合奏方法,我们发现了瞬态寿命的伽马分布,这与其他未删除的系统不同,在这些系统中发现正常分布可以控制该过程。此外,我们分析了参数变化速率如何影响小费的概率,并得出了一个缩放定律,该定律定律将倾斜发生的参数值和瞬态混乱的寿命与参数变化率有关。
External and internal factors may cause a system's parameter to vary with time before it stabilizes. This drift induces a regime shift when the parameter crosses a bifurcation. Here, we study the case of an infinite dimensional system: a time-delayed oscillator whose time delay varies at a small but non-negligible rate. Our research shows that due to this parameter drift, trajectories from a chaotic attractor tip to other states with a certain probability. This causes the appearance of the phenomenon of transient chaos. By using an ensemble approach, we find a gamma distribution of transient lifetimes, unlike in other non-delayed systems where normal distributions have been found to govern the process. Furthermore, we analyze how the parameter change rate influences the tipping probability, and we derive a scaling law relating the parameter value for which the tipping takes place and the lifetime of the transient chaos with the parameter change rate.