论文标题

S3ML:用于机器学习推断的安全服务系统

S3ML: A Secure Serving System for Machine Learning Inference

论文作者

Ma, Junming, Yu, Chaofan, Zhou, Aihui, Wu, Bingzhe, Wu, Xibin, Chen, Xingyu, Chen, Xiangqun, Wang, Lei, Cao, Donggang

论文摘要

我们提出了S3ML,这是本文中用于机器学习推断的安全服务系统。 S3ML在Intel SGX飞地中运行机器学习模型,以保护用户的隐私。 S3ML设计安全的密钥管理服务,以构建灵活的隐私服务器群集,并提出新颖的SGX感知负载平衡和缩放方法,以满足用户的服务级别目标。我们已经基于Kubernetes实施了S3ML,作为一个低空,高可用和可扩展的系统。我们通过在一系列广泛使用的模型上进行了广泛的实验来证明S3ML的系统性能和有效性。

We present S3ML, a secure serving system for machine learning inference in this paper. S3ML runs machine learning models in Intel SGX enclaves to protect users' privacy. S3ML designs a secure key management service to construct flexible privacy-preserving server clusters and proposes novel SGX-aware load balancing and scaling methods to satisfy users' Service-Level Objectives. We have implemented S3ML based on Kubernetes as a low-overhead, high-available, and scalable system. We demonstrate the system performance and effectiveness of S3ML through extensive experiments on a series of widely-used models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源