论文标题

用独特的个性化词汇标记对话代理的短语

Labeling the Phrases of a Conversational Agent with a Unique Personalized Vocabulary

论文作者

Wake, Naoki, Sato, Machiko, Sasabuchi, Kazuhiro, Nakamura, Minako, Ikeuchi, Katsushi

论文摘要

将口语映射到手势是具有对话功能的机器人的重要研究主题。根据人类共同语音手势的研究,合理的映射解决方案是使用基于概念的方法,其中首先将文本映射到语义群集(即一个概念),其中包含具有相似含义的文本。随后,每个概念都映射到预定义的手势。通过使用基于概念的方法,本文讨论了为对话代理人个性化的独特词汇获得概念的实际问题。我们使用Microsoft Rinna作为代理,我们定性地比较通过自然语言处理(NLP)方法自动获得的概念与通过社会学方法手动获得的概念进行比较。然后,我们确定NLP方法的三个局限性:在语义层面上,具有表情符号和符号;在语义上,语,新单词和流行语;并处于务实的水平。我们将这些局限性归因于Rinna的个性化词汇。后续实验表明,使用基于概念的方法选择的机器人手势比随机选择的rinna词汇手势给人留下更好的印象,这表明基于概念的手势生成系统对个性化词汇表明有用。这项研究提供了有关具有个性化词汇的对话代理的手势生成系统开发的见解。

Mapping spoken text to gestures is an important research topic for robots with conversation capabilities. According to studies on human co-speech gestures, a reasonable solution for mapping is using a concept-based approach in which a text is first mapped to a semantic cluster (i.e., a concept) containing texts with similar meanings. Subsequently, each concept is mapped to a predefined gesture. By using a concept-based approach, this paper discusses the practical issue of obtaining concepts for a unique vocabulary personalized for a conversational agent. Using Microsoft Rinna as an agent, we qualitatively compare concepts obtained automatically through a natural language processing (NLP) approach to those obtained manually through a sociological approach. We then identify three limitations of the NLP approach: at the semantic level with emojis and symbols; at the semantic level with slang, new words, and buzzwords; and at the pragmatic level. We attribute these limitations to the personalized vocabulary of Rinna. A follow-up experiment demonstrates that robot gestures selected using a concept-based approach leave a better impression than randomly selected gestures for the Rinna vocabulary, suggesting the usefulness of a concept-based gesture generation system for personalized vocabularies. This study provides insights into the development of gesture generation systems for conversational agents with personalized vocabularies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源