论文标题

深厚的增强学习和运输研究:全面评论

Deep Reinforcement Learning and Transportation Research: A Comprehensive Review

论文作者

Farazi, Nahid Parvez, Ahamed, Tanvir, Barua, Limon, Zou, Bo

论文摘要

深度强化学习(DRL)是一种新兴方法,正在改变许多复杂的运输决策问题的方式。研究人员越来越多地转向这种强大的基于学习的方法,以解决整个运输领域的具有挑战性的问题。尽管文献中已经报道了许多有希望的应用,但仍然缺乏对许多DRL算法及其使用和适应的全面综合。本文的目的是通过对运输中的DRL应用进行全面,合成的综述来填补这一空白。我们首先提供DRL数学背景,流行和有前途的DRL算法以及一些高效的DRL扩展的概述。在此概述的基础上,进行了对运输文献中大约150项DRL研究的系统研究,分为七个不同的类别。在这篇综述的基础上,我们继续研究DRL技术在运输中的应用中的适用性,优势,缺点以及常见和应用特定的问题。最后,我们建议将来的研究指示,并提供可用的资源来实际实施DRL。

Deep reinforcement learning (DRL) is an emerging methodology that is transforming the way many complicated transportation decision-making problems are tackled. Researchers have been increasingly turning to this powerful learning-based methodology to solve challenging problems across transportation fields. While many promising applications have been reported in the literature, there remains a lack of comprehensive synthesis of the many DRL algorithms and their uses and adaptations. The objective of this paper is to fill this gap by conducting a comprehensive, synthesized review of DRL applications in transportation. We start by offering an overview of the DRL mathematical background, popular and promising DRL algorithms, and some highly effective DRL extensions. Building on this overview, a systematic investigation of about 150 DRL studies that have appeared in the transportation literature, divided into seven different categories, is performed. Building on this review, we continue to examine the applicability, strengths, shortcomings, and common and application-specific issues of DRL techniques with regard to their applications in transportation. In the end, we recommend directions for future research and present available resources for actually implementing DRL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源