论文标题

低剂量CT图像重建的多层残留稀疏变换(MARS)模型

Multi-layer Residual Sparsifying Transform (MARS) Model for Low-dose CT Image Reconstruction

论文作者

Yang, Xikai, Long, Yong, Ravishankar, Saiprasad

论文摘要

近年来,基于稀疏表示的信号模型受到了很大的关注。另一方面,由一系列功能层(通常称为深神经网络)组成的深层模型已在对象分类的任务上非常成功,并最近被引入图像重建。在这项工作中,我们通过结合稀疏表示和深层模型来开发一种新的图像重建方法,基于一种新颖的多层模型,以无监督的方式学习。所提出的框架将图像的经典稀疏转换模型扩展到多层残差稀疏转换(MARS)模型,其中所述转换域数据在层上共同稀疏。我们研究了使用受惩罚的加权最小二乘(PWLS)优化从有限的常规剂量图像中学到的MARS模型的应用。我们为多层变换学习和图像重建提供了新的配方。我们从有限的常规剂量图像中得出了有效的块坐标下降算法,以无监督的方式学习跨层的变换。然后将学习的模型纳入低剂量图像重建阶段。 XCAT Phantom和Mayo Clinic数据的低剂量CT实验结果表明,MARS模型优于基于边缘披露(EP)正常化程序的传统方法,例如两个数值指标(RMSE和SSIM)和噪声抑制。与单层学习变换(ST)模型相比,火星模型在维持一些微妙的细节方面表现更好。

Signal models based on sparse representations have received considerable attention in recent years. On the other hand, deep models consisting of a cascade of functional layers, commonly known as deep neural networks, have been highly successful for the task of object classification and have been recently introduced to image reconstruction. In this work, we develop a new image reconstruction approach based on a novel multi-layer model learned in an unsupervised manner by combining both sparse representations and deep models. The proposed framework extends the classical sparsifying transform model for images to a Multi-lAyer Residual Sparsifying transform (MARS) model, wherein the transform domain data are jointly sparsified over layers. We investigate the application of MARS models learned from limited regular-dose images for low-dose CT reconstruction using Penalized Weighted Least Squares (PWLS) optimization. We propose new formulations for multi-layer transform learning and image reconstruction. We derive an efficient block coordinate descent algorithm to learn the transforms across layers, in an unsupervised manner from limited regular-dose images. The learned model is then incorporated into the low-dose image reconstruction phase. Low-dose CT experimental results with both the XCAT phantom and Mayo Clinic data show that the MARS model outperforms conventional methods such as FBP and PWLS methods based on the edge-preserving (EP) regularizer in terms of two numerical metrics (RMSE and SSIM) and noise suppression. Compared with the single-layer learned transform (ST) model, the MARS model performs better in maintaining some subtle details.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源