论文标题

车辆可用性不确定性下的紫外线任务计划

UV mission planning under uncertainty in vehicles' availability

论文作者

Venkatachalam, Saravanan, Smereka, Jonathon M.

论文摘要

各种防御和民用应用都使用了异构无人车辆(UVS)。紫外线用于收集数据和监测的一些民用应用包括民用基础设施管理,农业,公共安全,执法,救灾和运输。本文提出了一个两阶段的随机模型,用于燃料约束的紫外线任务计划问题,其中多个加油站在不确定性的情况下可用。给定一组兴趣点(POI),一组为紫外线加油站,以及一个替代紫外线的基站且其可用性是随机的,目的是确定在基站的每个紫外线开始和终止每个紫外线的途径,以便最大化通过访问POIS收集的总体激励措施。我们提出了一种基于外部近似的分解算法,以求解大型实例,并使用随机实例进行广泛的计算实验。此外,使用机器人操作系统(ROS)框架进行数据驱动的仿真研究,以证实使用随机编程方法。

Heterogeneous unmanned vehicles (UVs) are used in various defense and civil applications. Some of the civil applications of UVs for gathering data and monitoring include civil infrastructure management, agriculture, public safety, law enforcement, disaster relief, and transportation. This paper presents a two-stage stochastic model for a fuel-constrained UV mission planning problem with multiple refueling stations under uncertainty in availability of UVs. Given a set of points of interests (POI), a set of refueling stations for UVs, and a base station where the UVs are stationed and their availability is random, the objective is to determine route for each UV starting and terminating at the base station such that overall incentives collected by visiting POIs is maximized. We present an outer approximation based decomposition algorithm to solve large instances, and perform extensive computational experiments using random instances. Additionally, a data driven simulation study is performed using robot operating system (ROS) framework to corroborate the use of the stochastic programming approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源