论文标题
OORT:通过有指导参与者选择的有效的联邦学习
Oort: Efficient Federated Learning via Guided Participant Selection
论文作者
论文摘要
联合学习(FL)是分布式机器学习(ML)的新兴方向,可以在边缘数据上进行原位模型培训和测试。尽管具有与传统ML相同的最终目标,但FL的执行量在规模上有很大差异,涵盖了数千至数百万的参与设备。结果,数据特性和设备功能在客户端之间差异很大。但是,现有的努力随机选择FL参与者,这导致模型和系统效率差。 在本文中,我们建议OORT通过有指导参与者的选择来提高联合培训和测试的性能。为了改善模型培训中的时间准确性的表现,OORT优先考虑那些具有既具有最大效用的客户在提高模型准确性和快速运行培训能力方面提供最大实用性的客户的使用。为了使FL开发人员能够在模型测试中解释其结果,OORT可以在参与者数据的分布中执行要求,同时改善了挑选樱桃客户的联合测试持续时间。我们的评估表明,与现有的参与者选择机制相比,OORT将时间准确性的性能提高了1.2x-14.1倍,最终模型的准确性提高了1.3%-9.8%,同时有效地在数百万客户范围内有效执行开发人员指定的模型测试标准。
Federated Learning (FL) is an emerging direction in distributed machine learning (ML) that enables in-situ model training and testing on edge data. Despite having the same end goals as traditional ML, FL executions differ significantly in scale, spanning thousands to millions of participating devices. As a result, data characteristics and device capabilities vary widely across clients. Yet, existing efforts randomly select FL participants, which leads to poor model and system efficiency. In this paper, we propose Oort to improve the performance of federated training and testing with guided participant selection. With an aim to improve time-to-accuracy performance in model training, Oort prioritizes the use of those clients who have both data that offers the greatest utility in improving model accuracy and the capability to run training quickly. To enable FL developers to interpret their results in model testing, Oort enforces their requirements on the distribution of participant data while improving the duration of federated testing by cherry-picking clients. Our evaluation shows that, compared to existing participant selection mechanisms, Oort improves time-to-accuracy performance by 1.2x-14.1x and final model accuracy by 1.3%-9.8%, while efficiently enforcing developer-specified model testing criteria at the scale of millions of clients.