论文标题
在单稳定方程的推动波前,单峰延迟反应
On pushed wavefronts of monostable equation with unimodal delayed reaction
论文作者
论文摘要
我们研究了Mackey-Glass型单稳定延迟反应扩散方程,并具有单峰出生功能$ g(u)$。该模型旨在描述单个物种种群的演变,在存在弱质量效应的情况下($ g(u_0)> g'(0)u_0 $,对于某些$ u_0> 0 $)。我们将注意力集中在缓慢的单调旅行方面的存在上:在给定的假设下,这个问题似乎很困难,因为通常的阳性和单调性论点无效。首先,我们解决了小延迟的前面存在问题,$ h \ in [0,h_p] $,其中$ h_p $(在某种意义上,$ h_p $(由显式公式给出)是最佳的。然后,我们采用代表性的线性单峰出生功能,从而可以对行进前线进行明确计算。在这种情况下,我们发现a)延迟的增加会破坏渐近稳定的推动前线; b)所有可允许的波前速度的集合具有半无限间隔$ [c_*, +\ infty)$的常规结构; c)对于每个$ h \ geq 0 $,推动的波前是唯一的(如果存在); d)推动波可以在正平衡周围缓慢振荡,以获得足够的大延迟。
We study the Mackey-Glass type monostable delayed reaction-diffusion equation with a unimodal birth function $g(u)$. This model, designed to describe evolution of single species populations, is considered here in the presence of the weak Allee effect ($g(u_0)>g'(0)u_0$ for some $u_0>0$). We focus our attention on the existence of slow monotonic traveling fronts to the equation: under given assumptions, this problem seems to be rather difficult since the usual positivity and monotonicity arguments are not effective. First, we solve the front existence problem for small delays, $h \in [0,h_p]$, where $h_p$ (given by an explicit formula) is optimal in a certain sense. Then we take a representative piece-wise linear unimodal birth function making possible explicit computation of traveling fronts. In this case, we find out that a) increase of delay can destroy asymptotically stable pushed fronts; b) the set of all admissible wavefront speeds has usual structure of a semi-infinite interval $[c_*, +\infty)$; c) for each $h\geq 0$, the pushed wavefront is unique (if it exists); d) pushed wave can oscillate slowly around the positive equilibrium for sufficiently large delays.