论文标题
弹性板的物理引导的神经网络框架:基于方程和基于能量的方法的比较
A Physics-Guided Neural Network Framework for Elastic Plates: Comparison of Governing Equations-Based and Energy-Based Approaches
论文作者
论文摘要
在实用工程应用中,阻碍机器学习最初成功扩展的障碍之一是准确性对“驱动”算法的数据库大小的依赖性。将已经知道的物理定律纳入培训过程可以大大减少所需数据库的大小。在这项研究中,我们建立了一个基于神经网络的计算框架,以表征弹性板的有限变形,在经典理论中,该框架由Föppl-von-von-vonkármán(FVK)方程描述,具有一组边界条件(BCS)。神经网络是通过将空间坐标作为输入和位移场作为输出以近似FVK方程的确切解决方案来构建的。然后将物理信息(PDE,BC和势能)纳入损失函数,并在不知道最终训练神经网络的精确解决方案的情况下采样伪数据集。通过将其应用于四种不同的载荷情况:平面张力,具有非均匀分布的拉伸力,平面内中部孔张力,平面外偏转和压缩下屈曲,可以仔细检查建模框架的预测准确性。 \ hl {比较制定损耗函数的三种方式:1)纯粹数据驱动,2)基于PDE的损失函数,3)基于能量的。通过与有限元模拟的比较,发现所有三种方法都可以表征板的弹性变形,如果经过适当的训练,则具有令人满意的精度。与将PDE和BC纳入损失相比,使用总势能在简单性调整和计算效率方面显示出某些优势。
One of the obstacles hindering the scaling-up of the initial successes of machine learning in practical engineering applications is the dependence of the accuracy on the size of the database that "drives" the algorithms. Incorporating the already-known physical laws into the training process can significantly reduce the size of the required database. In this study, we establish a neural network-based computational framework to characterize the finite deformation of elastic plates, which in classic theories is described by the Föppl--von Kármán (FvK) equations with a set of boundary conditions (BCs). A neural network is constructed by taking the spatial coordinates as the input and the displacement field as the output to approximate the exact solution of the FvK equations. The physical information (PDEs, BCs, and potential energies) is then incorporated into the loss function, and a pseudo dataset is sampled without knowing the exact solution to finally train the neural network. The prediction accuracy of the modeling framework is carefully examined by applying it to four different loading cases: in-plane tension with non-uniformly distributed stretching forces, in-plane central-hole tension, out-of-plane deflection, and buckling under compression. \hl{Three ways of formulating the loss function are compared: 1) purely data-driven, 2) PDE-based, and 3) energy-based. Through the comparison with the finite element simulations, it is found that all the three approaches can characterize the elastic deformation of plates with a satisfactory accuracy if trained properly. Compared with incorporating the PDEs and BCs in the loss, using the total potential energy shows certain advantage in terms of the simplicity of hyperparameter tuning and the computational efficiency.