论文标题
在非权利主义政权中,在重力场下的狄拉克·哈密顿的几何阶段
Geometric phase for Dirac Hamiltonian under gravitational fields in the non-relativistic regime
论文作者
论文摘要
我们显示了在时间无关的引力场中以非相关性极限遍历的狄拉克粒子中的几何相的外观。事实证明,这类似于最初被描述为磁场中的几何相。我们探索了Kerr和Schwarzschild几何形状的几何阶段,它们具有显着的天体物理意义。然而,这项工作可以扩展到任何时空背景,包括时间依赖的背景。在Kerr背景(即旋转黑洞周围)中,几何相揭示了Aharonov-Bohm效应和Pancharatnam-Berry相。但是,在施瓦茨柴尔德几何形状中,即在非旋转的黑洞周围,只有后者出现。我们希望在强烈的重力场景中,例如黑洞周围的时空以及地球周围的重力弱环境,我们的断言可以得到验证。
We show the appearance of geometric phase in a Dirac particle traversing in non-relativistic limit in a time-independent gravitational field. This turns out to be similar to the one originally described as a geometric phase in magnetic fields. We explore the geometric phase in the Kerr and Schwarzschild geometries, which have significant astrophysical implications. Nevertheless, the work can be extended to any spacetime background including that of time-dependent. In the Kerr background, i.e. around a rotating black hole, geometric phase reveals both the Aharonov-Bohm effect and Pancharatnam-Berry phase. However, in a Schwarzschild geometry, i.e. around a nonrotating black hole, only the latter emerges. We expect that our assertions can be validated in both the strong gravity scenarios, like the spacetime around black holes, and weak gravity environment around Earth.