论文标题
装饰的一维共同体和非交换性识别功率系列的张量信封
Decorated one-dimensional cobordisms and tensor envelopes of noncommutative recognizable power series
论文作者
论文摘要
该论文探讨了由零维次级次曼氏群体装饰的一维恢复性的非交通性功率序列和拓扑理论之间的关系。这些拓扑理论产生了非交通性可识别功率系列的几种类型的张量信封,包括该系列的句法代数和句法理想以及Deligne类别的类似物的类别。
The paper explores the relation between noncommutative power series and topological theories of one-dimensional cobordisms decorated by labelled zero-dimensional submanifolds. These topological theories give rise to several types of tensor envelopes of noncommutative recognizable power series, including the categories built from the syntactic algebra and syntactic ideals of the series and the analogue of the Deligne category.