论文标题

神经蒙特卡洛重归其化组

Neural Monte Carlo Renormalization Group

论文作者

Chung, Jui-Hui, Kao, Ying-Jer

论文摘要

重新归一化组(RG)转换背后的关键思想是,具有截然不同的微观化妆的物理系统的性能可以通过一些通用参数来表征。但是,由于RG程序中重量因子的许多可能选择,因此找到最佳的RG转换仍然很困难。在这里,我们通过识别有限的玻尔兹曼机器(RBM)中的条件分布以及RG过程中的重量因子分布,可以在无需事先了解物理系统的情况下学习最佳的实际空间RG转换。这种神经蒙特卡洛RG算法允许直接计算RG流量和关键指数。该方案自然会产生一种转换,该转换最大化了粗粒区域和环境之间的真实空间相互信息。我们的结果在物理学的RG转换与机器学习深度建筑之间建立了牢固的联系,为进一步的跨学科研究铺平了道路。

The key idea behind the renormalization group (RG) transformation is that properties of physical systems with very different microscopic makeups can be characterized by a few universal parameters. However, finding the optimal RG transformation remains difficult due to the many possible choices of the weight factors in the RG procedure. Here we show, by identifying the conditional distribution in the restricted Boltzmann machine (RBM) and the weight factor distribution in the RG procedure, an optimal real-space RG transformation can be learned without prior knowledge of the physical system. This neural Monte Carlo RG algorithm allows for direct computation of the RG flow and critical exponents. This scheme naturally generates a transformation that maximizes the real-space mutual information between the coarse-grained region and the environment. Our results establish a solid connection between the RG transformation in physics and the deep architecture in machine learning, paving the way to further interdisciplinary research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源