论文标题
基于自动装编码器的弯曲,振动和屈曲分析的基于自动编码器的能量方法
Deep Autoencoder based Energy Method for the Bending, Vibration, and Buckling Analysis of Kirchhoff Plates
论文作者
论文摘要
在本文中,我们提出了一种基于自动编码器的深层能量法(DAEM),用于对基尔chhoff板的弯曲,振动和屈曲分析。 DAEM利用了DAEM的高阶连续性,并在一个框架中集成了深层自动编码器和最小的总潜在原理,从而产生了一种无监督的特征学习方法。 DAEM是一种特定类型的前馈深神经网络(DNN),也可以用作函数近似器。具有鲁棒的特征提取能力,DAEM可以更有效地识别整个能源系统背后的模式,例如本文研究的场变量,固有频率和临界屈曲载荷因子。目标函数是最大程度地减少总势能。 DAEM基于物理域内的随机生成点进行无监督的学习,以便在所有点最小化总势能。为了振动和屈曲分析,损失函数是根据瑞利的原理和基本频率和临界屈曲载荷构建的。提出了基础机械模型的缩放双曲线切线激活函数,以满足连续性要求,并减轻弯曲分析下的梯度消失/爆炸性问题。可以轻松地实施码头,我们采用了Pytorch库和LBFGS Optimizer。对具有各种几何形状,负载条件和边界条件的几个数值示例进行了对DAEM配置的全面研究。
In this paper, we present a deep autoencoder based energy method (DAEM) for the bending, vibration and buckling analysis of Kirchhoff plates. The DAEM exploits the higher order continuity of the DAEM and integrates a deep autoencoder and the minimum total potential principle in one framework yielding an unsupervised feature learning method. The DAEM is a specific type of feedforward deep neural network (DNN) and can also serve as function approximator. With robust feature extraction capacity, the DAEM can more efficiently identify patterns behind the whole energy system, such as the field variables, natural frequency and critical buckling load factor studied in this paper. The objective function is to minimize the total potential energy. The DAEM performs unsupervised learning based on random generated points inside the physical domain so that the total potential energy is minimized at all points. For vibration and buckling analysis, the loss function is constructed based on Rayleigh's principle and the fundamental frequency and the critical buckling load is extracted. A scaled hyperbolic tangent activation function for the underlying mechanical model is presented which meets the continuity requirement and alleviates the gradient vanishing/explosive problems under bending analysis. The DAEM can be easily implemented and we employed the Pytorch library and the LBFGS optimizer. A comprehensive study of the DAEM configuration is performed for several numerical examples with various geometries, load conditions, and boundary conditions.