论文标题
弱透镜收敛图的形态
Morphology of Weak Lensing Convergence Maps
论文作者
论文摘要
我们通过扰动地重建其Minkowski功能(MFS)来研究收敛图的形态。我们提出了一组使用三个广义偏度谱的系统研究的系统研究,这是源红移和平滑角度尺度的函数。使用基于伪$ s _ {\ ell} $ s(psl)的方法,我们展示了这些光谱将如何在有任意的掩码和不均匀噪声的情况下以公正的方式重建MF。我们的理论预测基于最近引入的拟合函数。我们将结果与最先进的数值模拟进行了比较,并找到了出色的协议。重建可以作为角度谐波$ \ ell $和源红移$ z_s $的函数以受控的方式进行,从而可以在任何可能的非高斯性来源中更大的处理。我们的方法具有使用剪切数据直接估算收敛图的拓扑的优点。我们还研究了从宇宙微波背景(CMB)观测值推断出的弱透镜收敛图;而且我们发现,尽管在低红移时不那么重要,但在较高的红移时,出生后的校正在任何非高斯收敛地图的模型中都起着重要作用。我们还研究了来自不同层析成像箱的估计值的互相关。
We study the morphology of convergence maps by perturbatively reconstructing their Minkowski Functionals (MFs). We present a systematics study using a set of three generalised skew-spectra as a function of source redshift and smoothing angular scale. Using an approach based on pseudo-$S_{\ell}$s (PSL) we show how these spectra will allow reconstruction of MFs in the presence of an arbitrary mask and inhomogeneous noise in an unbiased way. Our theoretical predictions are based on a recently introduced fitting function to the bispectrum. We compare our results against state-of-the art numerical simulations and find an excellent agreement. The reconstruction can be carried out in a controlled manner as a function of angular harmonics $\ell$ and source redshift $z_s$ which allows for a greater handle on any possible sources of non-Gaussianity. Our method has the advantage of estimating the topology of convergence maps directly using shear data. We also study weak lensing convergence maps inferred from Cosmic Microwave Background (CMB) observations; and we find that, though less significant at low redshift, the post-Born corrections play an important role in any modelling of the non-Gaussianity of convergence maps at higher redshift. We also study the cross-correlations of estimates from different tomographic bins.