论文标题

基于生成RNN框架的直观面部动画编辑

Intuitive Facial Animation Editing Based On A Generative RNN Framework

论文作者

Berson, Eloïse, Soladié, Catherine, Stoiber, Nicolas

论文摘要

在过去的几十年中,制作令人信服的面部动画的关注点引起了人们的极大兴趣,这只是随着娱乐和专业活动的3D内容爆炸的加速而加速。可以说,使用运动捕获和重新定位已成为解决这一需求的主要解决方案。然而,尽管质量和自动化绩效的高度高度仍然需要手动清洁和编辑才能完善原始结果,这是时间和技能的过程。在本文中,我们希望利用机器学习使面部动画编辑更快,更容易被非专家访问。受到最新图像介绍方法的启发,我们设计了一个生成的复发性神经网络,该神经网络将现实的运动生成现有面部动画的指定段,可选地按照用户提供的指导约束。我们的系统处理不同的监督或无监督的编辑方案,例如在遮挡,表达式校正,语义内容修改和噪声过滤过程中进行运动填充。我们在几个动画编辑用例中演示了系统的可用性。

For the last decades, the concern of producing convincing facial animation has garnered great interest, that has only been accelerating with the recent explosion of 3D content in both entertainment and professional activities. The use of motion capture and retargeting has arguably become the dominant solution to address this demand. Yet, despite high level of quality and automation performance-based animation pipelines still require manual cleaning and editing to refine raw results, which is a time- and skill-demanding process. In this paper, we look to leverage machine learning to make facial animation editing faster and more accessible to non-experts. Inspired by recent image inpainting methods, we design a generative recurrent neural network that generates realistic motion into designated segments of an existing facial animation, optionally following user-provided guiding constraints. Our system handles different supervised or unsupervised editing scenarios such as motion filling during occlusions, expression corrections, semantic content modifications, and noise filtering. We demonstrate the usability of our system on several animation editing use cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源