论文标题
在关于Hadamard空间中MOSCO收敛的定理上
On a theorem about Mosco convergence in Hadamard spaces
论文作者
论文摘要
令$(f^n),f $为在哈玛德空间上定义的一系列适当的闭合凸功能。我们表明,在某些其他条件下,近端映射$ j^n_λx$ to $j_λx$的融合意味着$ f^n $ to $ f $。该结果与Bacak定理有关Hadamard空间中的MOSCO收敛性的逆转。
Let $(f^n),f$ be a sequence of proper closed convex functions defined on a Hadamard space. We show that the convergence of proximal mappings $J^n_λx$ to $J_λx$, under certain additional conditions, imply Mosco convergence of $f^n$ to $f$. This result is a converse to a theorem of Bacak about Mosco convergence in Hadamard spaces.