论文标题

近似可恢复性和相对熵II:一般v。Neumann代数的2个阳性通道

Approximate recoverability and relative entropy II: 2-positive channels of general v. Neumann algebras

论文作者

Faulkner, Thomas, Hollands, Stefan

论文摘要

在本系列中,我们将结果概括为一般v。Neumann代数之间的量子通道,证明了通过通道的相对熵发生较小变化的状态的近似可恢复性。为此,我们得出了一种加强的量子数据处理不等式的形式,用于在两个v。Neumann代数之间的通道下两个状态的相对熵变化。与通常的不平等相比,有一个明确的下限,涉及原始状态和恢复通道之间的保真度。

We generalize our results in paper I in this series to quantum channels between general v. Neumann algebras, proving the approximate recoverability of states which undergo a small change in relative entropy through the channel. To this end, we derive a strengthened form of the quantum data processing inequality for the change in relative entropy of two states under a channel between two v. Neumann algebras. Compared to the usual inequality, there is an explicit lower bound involving the fidelity between the original state and a recovery channel.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源