论文标题
带有主题知识图的可控制的主题到essay生成器
A Sentiment-Controllable Topic-to-Essay Generator with Topic Knowledge Graph
论文作者
论文摘要
生动生动,新颖和多样的论文只有几个给定的主题单词是自然语言产生的一项挑战。在以前的工作中,尚未解决两个问题:在文本下方忽略情绪,而对与主题相关的知识的利用不足。因此,我们提出了一个具有主题知识图增强的解码器的新型情感控制主题到essay生成器,该发电机名为SCTKG,该解码器基于条件变化自动编码器(CVAE)框架。首先,我们将情感信息注入生成器中,以控制每个句子的情绪,这导致了各种生成的论文。然后,我们设计一个主题知识图增强解码器。与分别使用知识实体的现有模型不同,我们的模型将知识图视为一个整体,并在图中编码更结构化的,连接的语义信息以生成更相关的文章。实验结果表明,我们的SCTKG可以产生情感控制论文,并在主题相关性,流利性和自动评估方面优于最先进的方法。
Generating a vivid, novel, and diverse essay with only several given topic words is a challenging task of natural language generation. In previous work, there are two problems left unsolved: neglect of sentiment beneath the text and insufficient utilization of topic-related knowledge. Therefore, we propose a novel Sentiment-Controllable topic-to-essay generator with a Topic Knowledge Graph enhanced decoder, named SCTKG, which is based on the conditional variational autoencoder (CVAE) framework. We firstly inject the sentiment information into the generator for controlling sentiment for each sentence, which leads to various generated essays. Then we design a Topic Knowledge Graph enhanced decoder. Unlike existing models that use knowledge entities separately, our model treats the knowledge graph as a whole and encodes more structured, connected semantic information in the graph to generate a more relevant essay. Experimental results show that our SCTKG can generate sentiment controllable essays and outperform the state-of-the-art approach in terms of topic relevance, fluency, and diversity on both automatic and human evaluation.