论文标题

带有局部初始数据的波方程的爆炸结果:与非线性相结合的标尺不变性阻尼和质量项

A blow-up result for the wave equation with localized initial data: the scale-invariant damping and mass term with combined nonlinearities

论文作者

Hamouda, Makram, Hamza, Mohamed Ali

论文摘要

在\ textit {scale-Invariant案例}中,我们对本文感兴趣,以研究阻尼波方程,并具有质量项和两个合并的非线性。更准确地说,我们考虑以下等式:$$(e){1cm} u_ {tt}-Δu+\fracμ{1+t} u_t+\ frac {ν^2} {(1+t){(1+t) \ Mathbb {r}^n \ times [0,\ infty),$$,带有少量初始数据。根据质量和阻尼系数的一些假设,分别为$ν$和$μ> 0 $,我们表明$(e)$解决方案的爆炸区域和寿命与\ cite {our2}获得的解决方案相同。 此外,在部分使用$(e)$完成的计算中,我们在Glassey猜想上以$(e)$的解决方案来增强\ cite {palmieri}的结果,并省略了非线性术语$ | u |^q $。确实,爆炸区域从$ p \ in(1,p_g(n+σ)] $延长,其中$σ$由(1.12)以下(1.12)给出,$ p \ in(1,p_g(n+μ)] $产量,因此,当$(μ-1)^2-2-2-4c con sance con con con中,lifespan的更好估计是一个更好的限制,否则con con con con con con,live con con con,我们均为两个。 {\它对没有非线性项$ | u |^q $)的$(e)$(e)$(e)$的动力学没有影响,以及我们在\ cite {our2}中做出的猜想对在这里获得的全球存在区域之间的阈值之间的阈值。

We are interested in this article in studying the damped wave equation with localized initial data, in the \textit{scale-invariant case} with mass term and two combined nonlinearities. More precisely, we consider the following equation: $$ (E) {1cm} u_{tt}-Δu+\fracμ{1+t}u_t+\frac{ν^2}{(1+t)^2}u=|u_t|^p+|u|^q, \quad \mbox{in}\ \mathbb{R}^N\times[0,\infty), $$ with small initial data. Under some assumptions on the mass and damping coefficients, $ν$ and $μ>0$, respectively, we show that blow-up region and the lifespan bound of the solution of $(E)$ remain the same as the ones obtained in \cite{Our2} in the case of a mass-free wave equation, it i.e. $(E)$ with $ν=0$. Furthermore, using in part the computations done for $(E)$, we enhance the result in \cite{Palmieri} on the Glassey conjecture for the solution of $(E)$ with omitting the nonlinear term $|u|^q$. Indeed, the blow-up region is extended from $p \in (1, p_G(N+σ)]$, where $σ$ is given by (1.12) below, to $p \in (1, p_G(N+μ)]$ yielding, hence, a better estimate of the lifespan when $(μ-1)^2-4ν^2<1$. Otherwise, the two results coincide. Finally, we may conclude that the mass term {\it has no influence} on the dynamics of $(E)$ (resp. $(E)$ without the nonlinear term $|u|^q$), and the conjecture we made in \cite{Our2} on the threshold between the blow-up and the global existence regions obtained holds true here.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源