论文标题
Miniscope3D:优化的单发微小3D荧光显微镜
Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy
论文作者
论文摘要
微型荧光显微镜是系统生物学的标准工具。但是,广场微型显微镜仅捕获2D信息,并且可以使3D功能的修改增加了大小和重量,并且在狭窄的深度范围内的分辨率较差。在这里,我们通过在物镜的孔径停止处用优化的多焦点掩码替换常规2D Miniscope的管镜来实现3D功能。将相掩码放在孔径停止位置可显着降低设备的尺寸,并改变焦距,可以在较宽的深度范围内均匀分辨率。相蒙版将3D荧光强度编码为单个2D测量,并通过求解稀疏性约束的反问题来恢复3D体积。我们提供了设计和制造相掩码和有效的远期模型的方法,该模型解释了微型目标的现场变化畸变。我们演示了一个高17毫米的原型,重2.5克,达到2.76 $μ$ m的横向,而在900x700x390 $μm^3 $体积的大部分中,每秒40卷中的大部分中的大部分轴向分辨率为15美元。在分辨率靶标,动态生物样品和小鼠脑组织实验验证性能。与现有的微型单发量捕获实现相比,我们的系统较小且更轻,在整个10倍更大的可用深度范围内,横向和轴向分辨率更好2倍以上。我们的显微镜设计为紧凑型平台重要的应用提供了单发3D成像,例如自由移动动物中的体积神经成像以及在孵化器和实验室芯片设备中动态样品的3D运动研究。
Miniature fluorescence microscopes are a standard tool in systems biology. However, widefield miniature microscopes capture only 2D information, and modifications that enable 3D capabilities increase the size and weight and have poor resolution outside a narrow depth range. Here, we achieve the 3D capability by replacing the tube lens of a conventional 2D Miniscope with an optimized multifocal phase mask at the objective's aperture stop. Placing the phase mask at the aperture stop significantly reduces the size of the device, and varying the focal lengths enables a uniform resolution across a wide depth range. The phase mask encodes the 3D fluorescence intensity into a single 2D measurement, and the 3D volume is recovered by solving a sparsity-constrained inverse problem. We provide methods for designing and fabricating the phase mask and an efficient forward model that accounts for the field-varying aberrations in miniature objectives. We demonstrate a prototype that is 17 mm tall and weighs 2.5 grams, achieving 2.76 $μ$m lateral, and 15 $μ$m axial resolution across most of the 900x700x390 $μm^3$ volume at 40 volumes per second. The performance is validated experimentally on resolution targets, dynamic biological samples, and mouse brain tissue. Compared with existing miniature single-shot volume-capture implementations, our system is smaller and lighter and achieves a more than 2x better lateral and axial resolution throughout a 10x larger usable depth range. Our microscope design provides single-shot 3D imaging for applications where a compact platform matters, such as volumetric neural imaging in freely moving animals and 3D motion studies of dynamic samples in incubators and lab-on-a-chip devices.