论文标题

分布稳健的本地非参数条件估计

Distributionally Robust Local Non-parametric Conditional Estimation

论文作者

Nguyen, Viet Anh, Zhang, Fan, Blanchet, Jose, Delage, Erick, Ye, Yinyu

论文摘要

有条件的估计给定特定的协变量值(即,局部条件估计或功能估计)无处不在,在工程,社会和自然科学中的应用中非常有用。现有的数据驱动的非参数估计器主要集中在结构化均匀数据(例如弱独立和固定数据)上,因此它们对对抗噪声敏感,并且在较低的样本量下的性能可能很差。为了减轻这些问题,我们提出了一个新的分布稳定的估计器,该估计值通过在Wasserstein歧义集中所有对抗性分布中最小化最坏情况的有条件预期损失,从而产生非参数局部估计。我们表明,尽管通常很棘手,但在广泛适用的设置下可以通过凸优化有效地找到局部估计器,并且对数据的腐败和异质性是牢固的。合成和MNIST数据集的实验显示了这类新的估计器的竞争性能。

Conditional estimation given specific covariate values (i.e., local conditional estimation or functional estimation) is ubiquitously useful with applications in engineering, social and natural sciences. Existing data-driven non-parametric estimators mostly focus on structured homogeneous data (e.g., weakly independent and stationary data), thus they are sensitive to adversarial noise and may perform poorly under a low sample size. To alleviate these issues, we propose a new distributionally robust estimator that generates non-parametric local estimates by minimizing the worst-case conditional expected loss over all adversarial distributions in a Wasserstein ambiguity set. We show that despite being generally intractable, the local estimator can be efficiently found via convex optimization under broadly applicable settings, and it is robust to the corruption and heterogeneity of the data. Experiments with synthetic and MNIST datasets show the competitive performance of this new class of estimators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源