论文标题
使用基于深度学习的规范映射进行医学图像协调:迈向成像中的健壮且可推广的学习
Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging
论文作者
论文摘要
传统和深度学习的方法在医学成像领域表现出了巨大的潜力,作为得出诊断,预后和预测性生物标志物的手段,并通过为精密医学做出贡献。但是,这些方法尚未看到广泛的临床采用,部分原因是各种成像设备,获取方案和患者人群的概括性能有限。在这项工作中,我们提出了一个新的范式,其中从各种获取条件的数据“协调”到一个通用的参考领域,可以进行准确的模型学习和预测。通过学习无监督的图像来图像使用生成深度学习模型从不同数据集到参考域的图像映射,我们旨在减少混杂的数据变化,同时保存语义信息,从而更轻松地在参考域中使学习任务更容易。我们在两个示例问题上测试了这种方法,即基于MRI的大脑年龄预测和精神分裂症的分类,利用了跨越9个站点和9701名受试者的MRI数据的合并组。我们的结果表明,即使培训仅限于单个站点,这些任务在样本外数据中也有很大改进。
Conventional and deep learning-based methods have shown great potential in the medical imaging domain, as means for deriving diagnostic, prognostic, and predictive biomarkers, and by contributing to precision medicine. However, these methods have yet to see widespread clinical adoption, in part due to limited generalization performance across various imaging devices, acquisition protocols, and patient populations. In this work, we propose a new paradigm in which data from a diverse range of acquisition conditions are "harmonized" to a common reference domain, where accurate model learning and prediction can take place. By learning an unsupervised image to image canonical mapping from diverse datasets to a reference domain using generative deep learning models, we aim to reduce confounding data variation while preserving semantic information, thereby rendering the learning task easier in the reference domain. We test this approach on two example problems, namely MRI-based brain age prediction and classification of schizophrenia, leveraging pooled cohorts of neuroimaging MRI data spanning 9 sites and 9701 subjects. Our results indicate a substantial improvement in these tasks in out-of-sample data, even when training is restricted to a single site.