论文标题
均匀边缘的随机应急表的渐近特性
Asymptotic Properties of Random Contingency Tables with Uniform Margin
论文作者
论文摘要
令$ c \ geq 2 $为正整数。考虑$ n \ times n $非负整数矩阵,其行总和和列总和均等于$ cn $,让$ x =(x_ {ij})_ {1 \ leq i,j \ leq n} $在此组合上均匀分布。此$ x $称为均匀边距的随机抗势表。在本文中,我们将$ x =(x_ {ij})_ {1 \ leq i,j \ leq n} $的各种渐近属性研究为$ n \ to \ infty $。
Let $C\geq 2$ be a positive integer. Consider the set of $n\times n$ non-negative integer matrices whose row sums and column sums are all equal to $Cn$ and let $X=(X_{ij})_{1\leq i,j\leq n}$ be uniformly distributed on this set. This $X$ is called the random contingency table with uniform margin. In this paper, we study various asymptotic properties of $X=(X_{ij})_{1\leq i,j\leq n}$ as $n\to\infty$.