论文标题
N颗粒系统和渐近滤波的波函数的弱渐近学
Weak asymptotics of wave function for N-particle system and asymptotic filtering
论文作者
论文摘要
构建了Hyperradius大值的渐近表示,是为$ n $颗粒系统的散射波函数构建的,被认为是角变量坐标的广义函数。渐近表示的系数以$ n $ - 粒子散射矩阵表示。发现了渐近过滤的现象,该现象包括一个事实,即散射过程有助于这种渐近表示的主要术语,在这种渐近表示中,在相互作用前后,所有颗粒均自由。所获得的表示形式用于在超透明表示中构建$ n $颗粒的波函数的部分组件的正确渐近学。
Asymptotic representations for large values of the hyperradius are constructed for the scattering wave function of a system of $ N $ particles considered as a generalized function of angular variable coordinates. The coefficients of the asymptotic representations are expressed in terms of the $N$-particle scattering matrix. The phenomenon of asymptotic filtration is discovered, which consists in the fact that only scattering processes contribute to the leading terms of such an asymptotic representation, in which all particles are free both before and after interaction. The obtained representations are used to construct the correct asymptotics of the partial components of the wave function of $N$ particles in the hyperspherical representation.