论文标题

气喘吁吁的双曲线3个manifolds

The panted cobordism group of cusped hyperbolic 3-manifolds

论文作者

Sun, Hongbin

论文摘要

对于任何面向脱落的双曲线$ 3 $ - manifold $ m $,我们研究其$(r,ε)$ - 气喘吁吁的cobordism群体,这是由$(r,ε)$ - $ m $ modulo $(r,ε)$(r,ε)$(r,ε)$(r,ε)$(r,ε)$好的良好的良好曲线产生的abelian集团。特别是,我们证明,对于足够小的$ε> 0 $和足够大的$ r> 0 $,$(r,ε)$ - $ m $的$(r,ε)$ - $ m $的cobordism grout是同构至$ h_1(\ text {so} {so}(so}(so}(m); \ nathbb {z})$。

For any oriented cusped hyperbolic $3$-manifold $M$, we study its $(R,ε)$-panted cobordism group, which is the abelian group generated by $(R,ε)$-good curves in $M$ modulo the oriented boundaries of $(R,ε)$-good pants. In particular, we prove that for sufficiently small $ε>0$ and sufficiently large $R>0$, some modified version of the $(R,ε)$-panted cobordism group of $M$ is isomorphic to $H_1(\text{SO}(M);\mathbb{Z})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源