论文标题
多标签意图检测几乎没有学习
Few-shot Learning for Multi-label Intent Detection
论文作者
论文摘要
在本文中,我们研究了用户意图检测的几个发射多标签分类。对于多标签意图检测,最先进的工作估计标签 - 实体相关性得分并使用阈值来选择多个相关的意图标签。为了确定只有几个示例的适当阈值,我们首先学习在数据丰富的域上的通用阈值经验,然后通过基于非参数学习的校准将阈值调整到某些少数几个弹药域。为了更好地计算标签 - 内置相关性评分,我们将标签名称嵌入为表示空间中的锚点,该标签名称嵌入了表示空间中的锚点,从而完善了不同类别的表示形式,以彼此良好分离。两个数据集上的实验表明,所提出的模型在一击和五击设置中都显着胜过强大的基线。
In this paper, we study the few-shot multi-label classification for user intent detection. For multi-label intent detection, state-of-the-art work estimates label-instance relevance scores and uses a threshold to select multiple associated intent labels. To determine appropriate thresholds with only a few examples, we first learn universal thresholding experience on data-rich domains, and then adapt the thresholds to certain few-shot domains with a calibration based on nonparametric learning. For better calculation of label-instance relevance score, we introduce label name embedding as anchor points in representation space, which refines representations of different classes to be well-separated from each other. Experiments on two datasets show that the proposed model significantly outperforms strong baselines in both one-shot and five-shot settings.