论文标题
端到端的二进制神经网络用于文本分类
End to End Binarized Neural Networks for Text Classification
论文作者
论文摘要
深层神经网络几乎在每个自然语言处理任务中都表现出了出色的表现,但是,它们日益增加的复杂性引起了人们的关注。特别是,这些网络需要在计算硬件上支出高支出,而培训预算是许多人关注的问题。即使对于训练有素的网络,推理阶段也可能对资源约束设备的要求太高,从而限制了其适用性。最先进的变压器模型是一个生动的例子。简化网络执行的计算是放松复杂性要求的一种方法。在本文中,我们为意图分类任务提出了一个端到端的二进制神经网络体系结构。为了充分利用端到头二进制的潜力,输入表示(代币统计的向量嵌入)和分类器都是二线化的。我们证明了此类体系结构在三个数据集对简短文本的意图分类以及使用较大数据集的文本分类的效率。所提出的体系结构可与标准意图分类数据集的最新结果相媲美,同时使用降低了约20-40%的内存和训练时间。此外,可以单独使用架构的各个组件,例如文档或二进制分类器的二进制矢量嵌入或二进制分类器。
Deep neural networks have demonstrated their superior performance in almost every Natural Language Processing task, however, their increasing complexity raises concerns. In particular, these networks require high expenses on computational hardware, and training budget is a concern for many. Even for a trained network, the inference phase can be too demanding for resource-constrained devices, thus limiting its applicability. The state-of-the-art transformer models are a vivid example. Simplifying the computations performed by a network is one way of relaxing the complexity requirements. In this paper, we propose an end to end binarized neural network architecture for the intent classification task. In order to fully utilize the potential of end to end binarization, both input representations (vector embeddings of tokens statistics) and the classifier are binarized. We demonstrate the efficiency of such architecture on the intent classification of short texts over three datasets and for text classification with a larger dataset. The proposed architecture achieves comparable to the state-of-the-art results on standard intent classification datasets while utilizing ~ 20-40% lesser memory and training time. Furthermore, the individual components of the architecture, such as binarized vector embeddings of documents or binarized classifiers, can be used separately with not necessarily fully binary architectures.