论文标题
概括性的语义分段
Generalized Few-shot Semantic Segmentation
论文作者
论文摘要
训练语义分割模型需要大量注释的数据,因此很难快速适应不满足这种情况的新型类别。很少有射击分段(FS-SEG)通过许多限制来解决此问题。在本文中,我们介绍了一种新的基准,称为通用的少数语义分割(GFS-SEG),以分析同时分割新类别的概括能力,其中很少有示例和基本类别和足够的示例。这是第一项研究表明,以前代表性的最先进的FS-SEG方法在GFS-SEG中缺乏,并且性能差异主要来自FS-SEG的约束设置。为了使GFS-Seg可进行,我们设置了一个GFS-SEG基线,该基线在原始模型上实现了不错的性能而没有结构性变化。然后,由于上下文对于语义细分至关重要,因此我们提出了上下文感知的原型学习(CAPL),该学习(CAPL)通过1)利用支持样本中的同时存在的先验知识,以及2)将上下文信息动态地丰富到分类器上,该信息以每个查询图像的内容为条件。实验证明,两种贡献都具有实质性的优点。对Pascal-Voc和可可的广泛实验表现出CAPL的有效性,CAPL通过实现竞争性能来很好地概括为FS-SEG。代码可在https://github.com/dvlab-research/gfs-seg上找到。
Training semantic segmentation models requires a large amount of finely annotated data, making it hard to quickly adapt to novel classes not satisfying this condition. Few-Shot Segmentation (FS-Seg) tackles this problem with many constraints. In this paper, we introduce a new benchmark, called Generalized Few-Shot Semantic Segmentation (GFS-Seg), to analyze the generalization ability of simultaneously segmenting the novel categories with very few examples and the base categories with sufficient examples. It is the first study showing that previous representative state-of-the-art FS-Seg methods fall short in GFS-Seg and the performance discrepancy mainly comes from the constrained setting of FS-Seg. To make GFS-Seg tractable, we set up a GFS-Seg baseline that achieves decent performance without structural change on the original model. Then, since context is essential for semantic segmentation, we propose the Context-Aware Prototype Learning (CAPL) that significantly improves performance by 1) leveraging the co-occurrence prior knowledge from support samples, and 2) dynamically enriching contextual information to the classifier, conditioned on the content of each query image. Both two contributions are experimentally shown to have substantial practical merit. Extensive experiments on Pascal-VOC and COCO manifest the effectiveness of CAPL, and CAPL generalizes well to FS-Seg by achieving competitive performance. Code is available at https://github.com/dvlab-research/GFS-Seg.