论文标题
通过准文献手术进行原始调整
Primitive tuning via quasiconformal surgery
论文作者
论文摘要
使用准文献手术,我们证明,任何原始的,批判后的双曲线多项式多项式都可以用任意的广义多项式和非排列临界点调节,从而将二次多项式的douady-hubbard的结果推广到高级多项式的情况下。这是在一个复杂变量中对更高程度多项式的重新归一化算子的溢流性溢流性宣传的肯定解决的。
Using quasiconformal surgery, we prove that any primitive, postcritically-finite hyperbolic polynomial can be tuned with an arbitrary generalized polynomial with non-escaping critical points, generalizing a result of Douady-Hubbard for quadratic polynomials to the case of higher degree polynomials. This solves affirmatively a conjecture by Inou and Kiwi on surjectivity of the renormalization operator on higher degree polynomials in one complex variable.