论文标题
对话动态的一般模型和严重疾病交流中的示例应用
A General Model of Conversational Dynamics and an Example Application in Serious Illness Communication
论文作者
论文摘要
自古以来,对话一直是信息交换的主要手段。了解对话中信息流的模式是评估和改善沟通质量的关键步骤。在本文中,我们描述了对话动力学模型(CODYM)分析,这是一种研究对话中信息流模式的新方法。 Codyms是Markov模型,可在说话者转弯的长度上捕获顺序依赖性。提出的方法是自动化和可扩展的,并保留了对话参与者的隐私。 CodyM分析的主要功能是量化和可视化信息流的模式,从一个或多个对话中的顺序转弯中简单地总结了信息流的模式。我们的方法是一般的,并补充了现有方法,为分析任何类型的对话提供了一种新工具。作为重要的第一个应用,我们演示了有关姑息治疗临床医生与严重患者之间转录对话的模型。这些对话是动态且复杂的,发生在沉重的情绪中,并包括困难的话题,例如临终偏好和患者价值观。我们执行了一组多功能的CodyM分析,该分析通过确认已知的对话转折和单词用法的模式来确定模型的有效性,(b)确定严重疾病对话中信息流的规范模式,以及(c)显示这些模式在叙事时间以及在叙事时间以及在表达愤怒,恐惧,恐惧,恐惧,恐惧,恐惧,恐惧,恐惧,恐惧,恐惧之中的不同之处如何变化。 Codyms的潜在应用范围从评估和培训有效的医疗保健沟通到比较语言和文化跨语言和文化的对话动态,并确定信息流的通用相似性和独特的“指纹”。
Conversation has been a primary means for the exchange of information since ancient times. Understanding patterns of information flow in conversations is a critical step in assessing and improving communication quality. In this paper, we describe COnversational DYnamics Model (CODYM) analysis, a novel approach for studying patterns of information flow in conversations. CODYMs are Markov Models that capture sequential dependencies in the lengths of speaker turns. The proposed method is automated and scalable, and preserves the privacy of the conversational participants. The primary function of CODYM analysis is to quantify and visualize patterns of information flow, concisely summarized over sequential turns from one or more conversations. Our approach is general and complements existing methods, providing a new tool for use in the analysis of any type of conversation. As an important first application, we demonstrate the model on transcribed conversations between palliative care clinicians and seriously ill patients. These conversations are dynamic and complex, taking place amidst heavy emotions, and include difficult topics such as end-of-life preferences and patient values. We perform a versatile set of CODYM analyses that (a) establish the validity of the model by confirming known patterns of conversational turn-taking and word usage, (b) identify normative patterns of information flow in serious illness conversations, and (c) show how these patterns vary across narrative time and differ under expressions of anger, fear and sadness. Potential applications of CODYMs range from assessment and training of effective healthcare communication to comparing conversational dynamics across language and culture, with the prospect of identifying universal similarities and unique "fingerprints" of information flow.