论文标题

$ \ mathbb {q}(\ sqrt [3] {p})$的$ 3 $ -CLASS组及其正常关闭

The $3$-class groups of $\mathbb{Q}(\sqrt[3]{p})$ and its normal closure

论文作者

Li, Jianing, Zhang, Shenxing

论文摘要

We determine the $3$-class groups of $\mathbb{Q}(\sqrt[3]{p})$ and $K=\mathbb{Q}(\sqrt[3]{p},\sqrt{-3})$ when $p\equiv 4,7\bmod 9$ is a prime and $3$ is a cubic modulo $p$.这证实了Barrucand-Cohn的猜想,并证明了Lemmermeyer在$ 3美元的$ k $中的最后剩下的案例。

We determine the $3$-class groups of $\mathbb{Q}(\sqrt[3]{p})$ and $K=\mathbb{Q}(\sqrt[3]{p},\sqrt{-3})$ when $p\equiv 4,7\bmod 9$ is a prime and $3$ is a cubic modulo $p$. This confirms a conjecture made by Barrucand-Cohn, and proves the last remaining case of a conjecture of Lemmermeyer on the $3$-class group of $K$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源