论文标题

增强有效网络:使用卷积神经网络检测乳腺癌中淋巴结转移

Boosted EfficientNet: Detection of Lymph Node Metastases in Breast Cancer Using Convolutional Neural Network

论文作者

Wang, Jun, Liu, Qianying, Xie, Haotian, Yang, Zhaogang, Zhou, Hefeng

论文摘要

近年来,全扫描图像的发展的进步为在病理学中利用数字图像的利用奠定了基础。在自动识别组织或细胞类型的计算机图像分析的帮助下,它们大大提高了组织病理学的解释和诊断准确性。在本文中,已对卷积中性网络(CNN)进行了调整,以预测和分类乳腺癌中的淋巴结转移。与仅适用于大分辨率图像的传统图像裁剪方法不同,我们提出了一种新型的数据增强方法,称为“随机中心裁剪”(RCC),以促进小分辨率图像。 RCC在保留图像分辨率和图像中心区域的同时,丰富了数据集。此外,我们减少了网络的降采样量表,以更好地促进小分辨率图像。此外,采用了注意力和特征融合(FF)机制来改善图像的语义信息。实验表明,我们的方法可以提高基本CNN体系结构的性能。而且,表现最佳的方法的精度分别为97.96%,RPCAM数据集的AUC分别为99.68%。

In recent years, advances in the development of whole-slide images have laid a foundation for the utilization of digital images in pathology. With the assistance of computer images analysis that automatically identifies tissue or cell types, they have greatly improved the histopathologic interpretation and diagnosis accuracy. In this paper, the Convolutional Neutral Network (CNN) has been adapted to predict and classify lymph node metastasis in breast cancer. Unlike traditional image cropping methods that are only suitable for large resolution images, we propose a novel data augmentation method named Random Center Cropping (RCC) to facilitate small resolution images. RCC enriches the datasets while retaining the image resolution and the center area of images. In addition, we reduce the downsampling scale of the network to further facilitate small resolution images better. Moreover, Attention and Feature Fusion (FF) mechanisms are employed to improve the semantic information of images. Experiments demonstrate that our methods boost performances of basic CNN architectures. And the best-performed method achieves an accuracy of 97.96% and an AUC of 99.68% on RPCam datasets, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源