论文标题

两桥结组的横帽数和表达

Crosscap number and epimorphisms of two-bridge knot groups

论文作者

Hoste, Jim, Shanahan, Patrick D., Van Cott, Cornelia A.

论文摘要

我们考虑了所有原始结的横盖数$γ$与部分订单之间的关系,这定义如下。对于两个节$ k $和$ j $,我们说$ k \ geq j $如果存在表达$ f:π_1(s^3-k)\ longrightArrowπ_1(s^3-j)$。我们证明,如果$ k $和$ j $是2桥结和$ k> j $,则$γ(k)\ geq3γ(j)-4 $。我们还对不平等的所有对$(k,j)$进行了分类。铃木和Tran证明了有关两个结属的类似结果。也就是说,如果$ k $和$ j $是2桥结和$ k> j $,则$ g(k)\ geq 3 g(j)-1 $,其中$ g(k)$表示结$ k $的属。

We consider the relationship between the crosscap number $γ$ of knots and a partial order on the set of all prime knots, which is defined as follows. For two knots $K$ and $J$, we say $K \geq J$ if there exists an epimorphism $f:π_1(S^3-K) \longrightarrow π_1(S^3-J)$. We prove that if $K$ and $J$ are 2-bridge knots and $K> J$, then $γ(K) \geq 3γ(J) -4$. We also classify all pairs $(K,J)$ for which the inequality is sharp. A similar result relating the genera of two knots has been proven by Suzuki and Tran. Namely, if $K$ and $J$ are 2-bridge knots and $K >J$, then $g(K) \geq 3 g(J)-1$, where $g(K)$ denotes the genus of the knot $K$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源