论文标题

超声图片分割的对比度渲染

Contrastive Rendering for Ultrasound Image Segmentation

论文作者

Li, Haoming, Yang, Xin, Liang, Jiamin, Shi, Wenlong, Chen, Chaoyu, Dou, Haoran, Li, Rui, Gao, Rui, Zhou, Guangquan, Fang, Jinghui, Liang, Xiaowen, Huang, Ruobing, Frangi, Alejandro, Chen, Zhiyi, Ni, Dong

论文摘要

超声(US)图像细分在深度学习时代具有重大改进。但是,美国图像中缺乏尖锐的界限仍然是分割的固有挑战。以前的方法通常诉诸于全球环境,多尺度提示或辅助指南以估计边界。这些方法很难接近像素级学习来生成细粒度的边界。在本文中,我们提出了一个新颖有效的框架,以改善美国图像的边界估计。我们的工作有三个亮点。首先,我们建议将边界估计作为一项渲染任务,该任务可以识别模棱两可的点(像素/体素),并通过丰富的特征表示学习来校准边界预测。其次,我们介绍了点对比度学习,以增强同一类中的点的相似性,并相反地降低了不同类别的点的相似性。因此,边界歧义得以进一步解决。第三,渲染和对比度学习任务都有助于一致的改进,同时减少网络参数。作为概念验证,我们对86个卵巢美国量的具有挑战性的数据集进行了验证实验。结果表明,我们提出的方法的表现优于最先进的方法,并且有可能用于临床实践。

Ultrasound (US) image segmentation embraced its significant improvement in deep learning era. However, the lack of sharp boundaries in US images still remains an inherent challenge for segmentation. Previous methods often resort to global context, multi-scale cues or auxiliary guidance to estimate the boundaries. It is hard for these methods to approach pixel-level learning for fine-grained boundary generating. In this paper, we propose a novel and effective framework to improve boundary estimation in US images. Our work has three highlights. First, we propose to formulate the boundary estimation as a rendering task, which can recognize ambiguous points (pixels/voxels) and calibrate the boundary prediction via enriched feature representation learning. Second, we introduce point-wise contrastive learning to enhance the similarity of points from the same class and contrastively decrease the similarity of points from different classes. Boundary ambiguities are therefore further addressed. Third, both rendering and contrastive learning tasks contribute to consistent improvement while reducing network parameters. As a proof-of-concept, we performed validation experiments on a challenging dataset of 86 ovarian US volumes. Results show that our proposed method outperforms state-of-the-art methods and has the potential to be used in clinical practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源