论文标题
某些流体机械现象的现场理论观点
Field theoretic viewpoints on certain fluid mechanical phenomena
论文作者
论文摘要
在本文中,我们研究了某些流体机械现象的领域理论观点。 在希格斯机制中,弱量规玻色子通过与标量场相互作用,从而导致载体玻色子质量基质。另一方面,通过无粘性,不可压缩和无关的液体加速的刚体在加速度上通过添加质量张量在加速度上感觉到了对立的力。我们发现了这些效果之间的物理类比,并提出了将它们相关的字典。对应关系将量规代代数转变为身体可以移动的方向空间,编码以相关身体形状的对称性破裂的模式,并将身体的对称性与真空歧管的对称性联系起来。新的观点提出了有趣的问题,特别是在破碎的对称性和希格斯粒子的流体类似物上。 理想的气体动力学可以产生类似冲击的奇异性,通常通过粘度正规化。在1D中,不连续性也可以分散平滑。在第二部分中,我们通过向汉密尔顿人添加毛细管能量$β_*(\nablaρ)^2/ρ$来发展具有指数$γ$的3D绝热流量的最小保守正规化。这导致了一支非线性力量,具有3 $ρ$的3个衍生物,同时保留了质量和熵的保护法。我们的模型承认色散声音,孤立和周期性的行驶波,但没有稳定的连续冲击解决方案。然而,在1D中,对于$γ= 2 $,周期域中的数值解决方案显示出复发和避免通过带相移散射的孤子来避免梯度灾难。这是通过我们模型的等效性(对于任何维度上的全趋化电位流)的等效性来解释这一点,该模型具有散热性的非线性Schrödinger方程(NLS,Cubic,for $γ= 2 $)。因此,我们的模型将KDV&NLS推广到任何维度的绝热气流。
In this thesis we study field theoretic viewpoints on certain fluid mechanical phenomena. In the Higgs mechanism, the weak gauge bosons acquire masses by interacting with a scalar field, leading to a vector boson mass matrix. On the other hand, a rigid body accelerated through an inviscid, incompressible and irrotational fluid feels an opposing force linear in its acceleration, via an added-mass tensor. We uncover a physical analogy between these effects and propose a dictionary relating them. The correspondence turns the gauge Lie algebra into the space of directions in which the body can move, encodes the pattern of symmetry breaking in the shape of an associated body and relates symmetries of the body to those of the vacuum manifold. The new viewpoint raises interesting questions, notably on the fluid analogs of the broken symmetry and Higgs particle. Ideal gas dynamics can develop shock-like singularities which are typically regularized through viscosity. In 1d, discontinuities can also be dispersively smoothed. In the 2nd part, we develop a minimal conservative regularization of 3d adiabatic flow of a gas with exponent $γ$, by adding a capillarity energy $β_* (\nabla ρ)^2/ρ$ to the Hamiltonian. This leads to a nonlinear force with 3 derivatives of $ρ$, while preserving the conservation laws of mass and entropy. Our model admits dispersive sound, solitary & periodic traveling waves, but no steady continuous shock-like solutions. Nevertheless, in 1d, for $γ= 2$, numerical solutions in periodic domains show recurrence & avoidance of gradient catastrophes via solitons with phase-shift scattering. This is explained via an equivalence of our model (for homentropic potential flow in any dimension) with a defocussing nonlinear Schrödinger equation (NLS, cubic for $γ= 2$). Thus, our model generalizes KdV & NLS to adiabatic gas flow in any dimension.