论文标题

MR/CT图像分割的选择性信息通过

Selective Information Passing for MR/CT Image Segmentation

论文作者

Zhu, Qikui, Li, Liang, Hao, Jiangnan, Zha, Yunfei, Zhang, Yan, Cheng, Yanxiang, Liao, Fei, Li, Pingxiang

论文摘要

自动化医学图像分割在许多临床应用中起着重要的作用,但是由于背景质地缺乏清晰的边界以及图像之间的显着形状和纹理变化,这是一项非常具有挑战性的任务。许多研究人员提出了一个带有跳过连接的编码器架构,以将编码器路径的低级特征图与解码器路径的高级特征图相结合,以自动分割医疗图像。跳过连接已被证明可以有效地恢复目标对象的细颗粒细节,并可能促进梯度背部传播。但是,并非这些连接传输的所有功能映射都会对网络性能产生积极影响。在本文中,为了自适应选择有用的信息以通过这些跳过连接,我们提出了一个具有自我监督功能的新颖的3D网络,名为选择性信息传递网络(SIP-NET)。我们评估了有关MICCAI前列腺MR图像分割2012赠款挑战数据集,TCIA胰腺CT-82和MICCAI 2017肝肿瘤分割(LITS)挑战数据集的建议模型。这些数据集中的实验结果表明,我们的模型获得了改进的分割结果,并且表现优于其他最先进的方法。该工作的源代码可在https://github.com/ahukui/sipnet上获得。

Automated medical image segmentation plays an important role in many clinical applications, which however is a very challenging task, due to complex background texture, lack of clear boundary and significant shape and texture variation between images. Many researchers proposed an encoder-decoder architecture with skip connections to combine low-level feature maps from the encoder path with high-level feature maps from the decoder path for automatically segmenting medical images. The skip connections have been shown to be effective in recovering fine-grained details of the target objects and may facilitate the gradient back-propagation. However, not all the feature maps transmitted by those connections contribute positively to the network performance. In this paper, to adaptively select useful information to pass through those skip connections, we propose a novel 3D network with self-supervised function, named selective information passing network (SIP-Net). We evaluate our proposed model on the MICCAI Prostate MR Image Segmentation 2012 Grant Challenge dataset, TCIA Pancreas CT-82 and MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge dataset. The experimental results across these data sets show that our model achieved improved segmentation results and outperformed other state-of-the-art methods. The source code of this work is available at https://github.com/ahukui/SIPNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源