论文标题
详细波动定理的熵产生的信息绑定
Information bound for entropy production from the detailed fluctuation theorem
论文作者
论文摘要
波动定理在熵生产的统计数据中施加了基本界限,而热力学的第二定律是最著名的。使用信息理论,我们量化了熵产生的信息,并从强大的详细波动定理中找到了均值的上限界限,这是其平均值的函数。该约束是根据最大分布(具有非线性论点的指数族的成员)给出的。我们表明,在弱耦合处使用骨气模式通过传热产生的熵再现了极限情况下的最大分布。上限扩展到连续域,并使用悬浮的纳米粒子进行验证。最后,我们表明量子交换引擎的组成可满足最大分布的特定情况,无论其尺寸如何。
Fluctuation theorems impose fundamental bounds in the statistics of the entropy production, with the second law of thermodynamics being the most famous. Using information theory, we quantify the information of entropy production and find an upper tight bound as a function of its mean from the strong detailed fluctuation theorem. The bound is given in terms of a maximal distribution, a member of the exponential family with nonlinear argument. We show that the entropy produced by heat transfer using a bosonic mode at weak coupling reproduces the maximal distribution in a limiting case. The upper bound is extended to the continuous domain and verified for the heat transfer using a levitated nanoparticle. Finally, we show that a composition of qubit swap engines satisfies a particular case of the maximal distribution regardless of its size.