论文标题
Elasticbroker:将HPC与云相结合,以提供对模拟的实时见解
ElasticBroker: Combining HPC with Cloud to Provide Realtime Insights into Simulations
论文作者
论文摘要
对于大规模的科学模拟,存储原始模拟结果以进行分析是昂贵的。为了最大程度地减少昂贵的I/O,经常使用“原位”分析,其中分析应用程序与科学模拟紧密结合,并可以访问和处理模拟结果。科学领域越来越多地采用大数据方法来分析模拟科学发现。但是,在两个语义上不同的生态系统(HPC和云系统)之间按大规模组织,转换和传输数据仍然是一个挑战。为了应对这些挑战,我们设计和实施了Elastic Broker软件框架,该框架将HPC和云应用程序架起形成“原位”科学工作流程。 Elasticbroker没有将模拟结果编写为并行文件系统,而是执行数据过滤,聚合和格式转换,以缩小HPC生态系统和独特的云生态系统之间的差距。为了实现此目标,Elastic Broker将模拟快照重新组织为连续的数据流并将其发送到云。在云中,我们部署了分布式流处理服务来执行在线数据分析。在我们的实验中,我们使用ElasticBroker来设置和执行交叉生态系统科学工作流,该工作流程由在超级计算机上运行的平行计算流体动力学(CFD)模拟组成,并在云计算平台运行的并行动态模式分解(DMD)分析应用程序。我们的结果表明,运行由弹性经纪人在本机环境中脱钩的HPC和大数据工作组成的科学工作流程,可以实现高质量的服务,良好的可扩展性并为正在进行的模拟提供高质量的分析。
For large-scale scientific simulations, it is expensive to store raw simulation results to perform post-analysis. To minimize expensive I/O, "in-situ" analysis is often used, where analysis applications are tightly coupled with scientific simulations and can access and process the simulation results in memory. Increasingly, scientific domains employ Big Data approaches to analyze simulations for scientific discoveries. However, it remains a challenge to organize, transform, and transport data at scale between the two semantically different ecosystems (HPC and Cloud systems). In an effort to address these challenges, we design and implement the ElasticBroker software framework, which bridges HPC and Cloud applications to form an "in-situ" scientific workflow. Instead of writing simulation results to parallel file systems, ElasticBroker performs data filtering, aggregation, and format conversions to close the gap between an HPC ecosystem and a distinct Cloud ecosystem. To achieve this goal, ElasticBroker reorganizes simulation snapshots into continuous data streams and send them to the Cloud. In the Cloud, we deploy a distributed stream processing service to perform online data analysis. In our experiments, we use ElasticBroker to setup and execute a cross-ecosystem scientific workflow, which consists of a parallel computational fluid dynamics (CFD) simulation running on a supercomputer, and a parallel dynamic mode decomposition (DMD) analysis application running in a Cloud computing platform. Our results show that running scientific workflows consisting of decoupled HPC and Big Data jobs in their native environments with ElasticBroker, can achieve high quality of service, good scalability, and provide high-quality analytics for ongoing simulations.