论文标题

群集激活映射与医学成像的应用

Cluster Activation Mapping with Applications to Medical Imaging

论文作者

Ryan, Sarah, Carlson, Nichole, Butler, Harris, Fingerlin, Tasha, Maier, Lisa, Xing, Fuyong

论文摘要

深度聚类中的一个开放问题是如何了解图像中的内容正在创建群集分配。这种视觉理解对于能够信任诸如深度学习之类的固有复杂算法的结果至关重要,尤其是当派生的集群分配可用于为决策提供信息或创建新的疾病子类型时。在这项工作中,我们开发了新的方法来生成群集激活映射(CLAM),该方法将无监督的深群集框架与Score-CAM的修改相结合,这是一种在监督环境中判别定位的方法。我们使用基于肺的计算机断层扫描的模拟研究评估了我们的方法,并将其应用于结节症人群的3D CT扫描中,以纯粹基于CT扫描表现,纯粹基于CT扫描。

An open question in deep clustering is how to understand what in the image is creating the cluster assignments. This visual understanding is essential to be able to trust the results of an inherently complex algorithm like deep learning, especially when the derived cluster assignments may be used to inform decision-making or create new disease sub-types. In this work, we developed novel methodology to generate CLuster Activation Mapping (CLAM) which combines an unsupervised deep clustering framework with a modification of Score-CAM, an approach for discriminative localization in the supervised setting. We evaluated our approach using a simulation study based on computed tomography scans of the lung, and applied it to 3D CT scans from a sarcoidosis population to identify new clusters of sarcoidosis based purely on CT scan presentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源