论文标题

舆论动态模型的新自由度:量表的任意性

A new degree of freedom for opinion dynamics models: the arbitrariness of scales

论文作者

Carpentras, Dino, Dinkelberg, Alejandro, Quayle, Michael

论文摘要

已经开发了舆论动态模型来研究和预测舆论的演变。对这些模型进行了深入的研究,尤其是探索不同的规则和拓扑,这些规则和拓扑可以被视为这些模型的两个自由度。在本文中,我们介绍了可以被认为是第三度的自由。 由于不可能在不衡量某人的情况下直接访问某人的意见,因此我们总是需要选择一种将现实世界观(例如反特朗普)转变为数字的方法。但是,这种转换的属性通常不会在意见动力学文献中讨论。例如,知道这种观点变成数字的转变是否应该是唯一的,或者是否可能是可能的;在后一种情况下,量表的选择将如何影响模型动力学。 在本文中,我们通过使用心理学中发展的知识来探讨这个问题。该领域一直在研究如何将心理结构(例如意见)转变为数字超过100年。 我们首先要在观点动态中查看一个简单的示例来介绍这种现象。然后,我们提供必要的数学背景,并分析Hegselmann和Krause介绍的三种意见动力学模型。最后,我们使用基于代理的模拟在完美量表(无限精度)和现实世界尺度的情况下测试模型。 无论是在理论分析还是在模拟中,我们都展示了量表的选择(即使在完美的准确性和精度的情况下)如何强烈改变模型的动力学。实际上,通过选择不同的量表,可以(1)找到不同数量的最终意见集群,(2)将最终意见分布的平均值更改为$ \ pm 100 \%$ $和(3)甚至将一种模型转换为另一种模型。

Opinion dynamics models have been developed to study and predict the evolution of public opinion. Intensive research has been carried out on these models, especially exploring the different rules and topologies, which can be considered two degrees of freedom of these models. In this paper we introduce what can be considered a third degree of freedom. Since it is not possible to directly access someone's opinions without measuring them, we always need to choose a way to transform real world opinions (e.g. being anti-Trump) into numbers. However, the properties of this transformation are usually not discussed in opinion dynamics literature. For example, it would be fundamental to know if this transformation of opinions into numbers should be unique, or if several are possible; and in the latter case, how the choice of the scale would affect the model dynamics. In this article we explore this question by using the knowledge developed in psychometrics. This field has been studying how to transform psychological constructs (such as opinions) into numbers for more than 100 years. We start by introducing this phenomenon by looking at a simple example in opinion dynamics. Then we provide the necessary mathematical background and analyze three opinion dynamics models introduced by Hegselmann and Krause. Finally, we test the models using agent-based simulations both in the case of perfect scales (infinite precision) and in the case of real world scales. Both in the theoretical analysis and in the simulations, we show how the choice of the scale (even in the case of perfect accuracy and precision) can strongly change the model's dynamics. Indeed, by choosing a different scale it is possible to (1) find different numbers of final opinion clusters, (2) change the mean value of the final opinion distribution up to a change of $\pm 100 \%$ and (3) even transform one model into another.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源