论文标题
$ h(b)$有限连接的平面域上的密度属性和成分运算符
Density Property and Composition Operators on $H(b)$ Spaces of Finitely Connected Planar Domains
论文作者
论文摘要
在这项工作中,研究了有限连接的平面域的$ h(b)$空间的密度以及这些功能空间上的组成操作员的界限。在定义函数$ b $是$ h^\ infty(d)$的单位球的极端和非极端点的情况下,考虑到代数$ \ MATHCAL {a}(d)$的密度是考虑到这两者的。在$ h(b)$空间上组成运算符的最后一部分界限中,并给出了单位磁盘案例的概括,在有限连接的域上,具有广义blaschke符号的组成运算符的界限也被表征了。
In this work, the density in $H(b)$ spaces of finitely connected planar domains and the boundedness of composition operators on these function spaces are studied. Density of the algebra $\mathcal{A}(D)$ is considered for both in the cases where the defining function $b$ is an extreme and non-extreme point of the unit ball of $H^\infty(D)$. In the last part boundedness of composition operators on $H(b)$ spaces is considered and as well as a generalization of the unit disk case is given, the boundedness of composition operators with generalized Blaschke symbols over finitely connected domains is characterized.