论文标题
BIFRAME的类别是无点双聚体的类别
The category of finitary biframes as the category of pointfree bispaces
论文作者
论文摘要
探索了粉饰性双歧架作为比特理学空间的阶二阶二的理论。 Biframes的类别是双帧的核心式子类别。研究了采用限制双叶帧作为双重分子概念的一些优点。特别是,有一个表明,对于每个框架,都有一个双frame在框架理论中扮演着与集会的角色相似:对于每个限制的双frame $ \ mathcal {l} $,都有一个biframe $ \ mathsf {a}(a}(a a}(\ nathcal a}),一个trable a {\ nathcal {\ mathcal {因此,其主要成分是$ \ Mathcal {l} $(即其pointfree bisubspaces)的有序集合的同构。此外,在Biframe双重性中,与$ \ Mathsf {a}相关的双架(\ Mathcal {l})$是与$ \ Mathcal {l} $相关的skula skula空间的自然比特比特比特的模拟。 Biframe双重性给我们一个比配对Hausdorffness弱的双屈性概念,与成对的$ T_1 $ AXIOM无与伦比,并且比成对的$ T_0 $ AXIOM强。引入了成对$ t_d $ bispaces的概念,作为经典$ T_D $ AXIOM的自然点概括。结果表明,在限制双子双重性中,该公理起着类似于框架二元性的经典$ t_d $ axiom的作用。
The theory of finitary biframes as order-theoretical duals of bitopological spaces is explored. The category of finitary biframes is a coreflective subcategory of that of biframes. Some of the advantages of adopting finitary biframes as a pointfree notion of bispaces are studied. In particular, it is shown that for every finitary biframe there is a biframe which plays a role analogue to that of the assembly in the theory of frames: for every finitary biframe $\mathcal{L}$ there is a finitary biframe $\mathsf{A}(\mathcal{L})$ with a universal property analogous to that of the assembly of a frame; and such that its main component is isomorphic to the ordered collection of finitary quotients of $\mathcal{L}$ (i.e. its pointfree bisubspaces). Furthermore, in the finitary biframe duality the bispace associated with $\mathsf{A}(\mathcal{L})$ is a natural bitopological analogue of the Skula space of the bispace associated with $\mathcal{L}$. The finitary biframe duality gives us a notion of bisobriety which is weaker than pairwise Hausdorffness, incomparable with the pairwise $T_1$ axiom, and stronger than the pairwise $T_0$ axiom. The notion of pairwise $T_D$ bispaces is introduced, as a natural point-set generalization of the classical $T_D$ axiom. It is shown that in the finitary biframe duality this axiom plays a role analogous to that of the classical $T_D$ axiom for the frame duality.