论文标题

多层行星中的固体潮汐摩擦:应用于地球,金星,超级地球和Trappist-1行星。可以将多层行星近似为同质行星吗?

Solid tidal friction in multi-layer planets: Application to Earth, Venus, a Super Earth and the TRAPPIST-1 planets. Can a multi-layer planet be approximated as a homogeneous planet?

论文作者

Bolmont, Emeline, Breton, Sylvain N., Tobie, Gabriel, Dumoulin, Caroline, Mathis, Stéphane, Grasset, Olivier

论文摘要

随着在0.06 au中发现Trappist-1及其七个行星,潮汐相互作用的正确处理变得有必要。 trappist-1行星的偏心,旋转和倾斜度确实是系统寿命中潮汐进化的结果。潮汐相互作用也可能导致行星内部的潮汐加热,然后可能导致火山和/或表面变形。在大多数研究以估计近距离行星或潮汐加热的旋转的研究中,行星被认为是均匀的身体,其流变学通常被视为麦克斯韦的流变学。 我们在这里研究了考虑多层结构和Andrade流变学对行星耗散潮汐能作为激发频率的函数的影响。我们使用一个内部结构模型,该模型提供了结构和流变量的径向轮廓来计算多层体的潮汐反应。然后,我们将结果与同质行星的耗散进行比较。 我们发现,对于纯粹的岩石身体,可以通过同质行星近似多层行星的响应。但是,使用剪切模量和粘度的平均曲线来计算同质行星响应会导致平均耗散的高估。我们提供剪切模量和粘度的合适值,以便能够重现各种类型的岩石行星的响应。但是,我们发现,如果行星具有冰冷的层,则由于冰冷层的特性非常不同,因此不能再被同质体近似,这导致了较高频率下的第二个耗散峰。我们还计算了外部Trappist-1行星(E至H)的潮汐加热曲线。

With the discovery of TRAPPIST-1 and its seven planets within 0.06 au, the correct treatment of tidal interactions is becoming necessary. The eccentricity, rotation, and obliquity of the planets of TRAPPIST-1 are indeed the result of tidal evolution over the lifetime of the system. Tidal interactions can also lead to tidal heating in the interior of the planets, which can then be responsible for volcanism and/or surface deformation. In the majority of studies to estimate the rotation of close-in planets or their tidal heating, the planets are considered as homogeneous bodies and their rheology is often taken to be a Maxwell rheology. We investigate here the impact of considering a multi-layer structure and an Andrade rheology on the way planets dissipate tidal energy as a function of the excitation frequency. We use an internal structure model, which provides the radial profile of structural and rheological quantities to compute the tidal response of multi-layer bodies. We then compare the outcome to the dissipation of a homogeneous planet. We find that for purely rocky bodies, it is possible to approximate the response of a multi-layer planet by that of a homogeneous planet. However, using average profiles of shear modulus and viscosity to compute the homogeneous planet response leads to an overestimation of the averaged dissipation. We provide fitted values of shear modulus and viscosity to be able to reproduce the response of various types of rocky planets. However, we find that if the planet has an icy layer, its tidal response can no longer be approximated by a homogeneous body because of the very different properties of the icy layers, which lead to a second dissipation peak at higher frequencies. We also compute the tidal heating profiles for the outer TRAPPIST-1 planets (e to h).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源