论文标题
通过密度插值对边界积分方程的通用内核正则化
General-purpose kernel regularization of boundary integral equations via density interpolation
论文作者
论文摘要
本文提出了一种适用于与线性椭圆形PDE相关的Calderón微积分的所有四个积分算子的一般高阶核正则化技术。与以前的密度插值方法一样,该提出的技术依赖于基础均匀PDE的溶液插值周围的密度函数,以便以界面(或更多规则)积分来重新出现奇异和近乎奇异的积分。我们在这里提出了一种简单的插值策略,与以前的方法不同,它不需要明确计算沿表面密度函数的高阶导数。此外,所提出的方法是内核和尺寸独立的,因为所寻求的密度密度插值剂被构造为点源场的线性组合,由相同的绿色功能在积分方程式中使用,从而使该过程原则上适用于任何PDE,以适用于已知绿色功能的任何PDE。为了确定性,我们在这里重点介绍(标量)拉普拉斯和Helmholtz方程以及(矢量)弹性弹力和时谐波弹性动力学方程的NyStröm方法。该方法的准确性,灵活性,效率和与快速求解器的兼容性通过各种大规模的三维数字示例证明。
This paper presents a general high-order kernel regularization technique applicable to all four integral operators of Calderón calculus associated with linear elliptic PDEs in two and three spatial dimensions. Like previous density interpolation methods, the proposed technique relies on interpolating the density function around the kernel singularity in terms of solutions of the underlying homogeneous PDE, so as to recast singular and nearly singular integrals in terms of bounded (or more regular) integrands. We present here a simple interpolation strategy which, unlike previous approaches, does not entail explicit computation of high-order derivatives of the density function along the surface. Furthermore, the proposed approach is kernel- and dimension-independent in the sense that the sought density interpolant is constructed as a linear combination of point-source fields, given by the same Green's function used in the integral equation formulation, thus making the procedure applicable, in principle, to any PDE with known Green's function. For the sake of definiteness, we focus here on Nyström methods for the (scalar) Laplace and Helmholtz equations and the (vector) elastostatic and time-harmonic elastodynamic equations. The method's accuracy, flexibility, efficiency, and compatibility with fast solvers are demonstrated by means of a variety of large-scale three-dimensional numerical examples.