论文标题

有效的阻力不仅仅是距离:拉普拉斯人,简单和舒尔补体

Effective resistance is more than distance: Laplacians, Simplices and the Schur complement

论文作者

Devriendt, Karel

论文摘要

本文讨论了图理论中众所周知的事实的几何观点,即有效抗性是图表上的一个度量。这一事实的经典证据利用了电路或随机步行的想法;在这里,我们描述了一种替代方法,该方法结合了几何(使用简单)和代数(使用Schur补充)思想。这些观点是在米罗斯拉夫·菲德勒(Miroslav Fiedler)的矩阵身份中统一的,在图形,拉普拉斯(Laplacian)矩阵和简单的相交中,它以有效阻力的指标为重要的后果,总结了许多相关的想法。

This article discusses a geometric perspective on the well-known fact in graph theory that the effective resistance is a metric on the nodes of a graph. The classical proofs of this fact make use of ideas from electrical circuits or random walks; here we describe an alternative approach which combines geometric (using simplices) and algebraic (using the Schur complement) ideas. These perspectives are unified in a matrix identity of Miroslav Fiedler, which beautifully summarizes a number of related ideas at the intersection of graphs, Laplacian matrices and simplices, with the metric property of the effective resistance as a prominent consequence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源