论文标题

在线性时间内收集欧几里得封闭的机器人链

Gathering a Euclidean Closed Chain of Robots in Linear Time

论文作者

Castenow, Jannik, Harbig, Jonas, Jung, Daniel, Knollmann, Till, der Heide, Friedhelm Meyer auf

论文摘要

这项工作重点介绍了以下问题,与欧几里得飞机上的$ n $自动移动机器人的收集问题有关:是否有可能解决在其坐标系统(迷失方向机器人)的任何轴上不同意的机器人的聚集,并且仅在$ O(n^2)中看到其他恒定距离(有限的可见度(有限的可见)$(N^2)假设遗忘机器人需要$θ(n^2)$ roughs [SPAA'11],可以解决有限的可见度的诱人机器人的收集,是最著名的算法。该算法的下限甚至包含在简化的封闭链模型中,每个机器人都有两个邻居,并且链连接形成一个循环。唯一的现有算法实现了迷失方向的机器人的线性数量,假定位于二维网格[IPDPS'16]和[SPAA'16]上的机器人。两种算法都利用本地可见的灯(发光模型)。 在这项工作中,我们为封闭的链模型展示了$ n $迷失方向的机器人,在欧几里得平面中可见度有​​限的机器人可以在$θ\ left(n \右)$ rounds中收集,假设有发光模型。灯光用于沿链条启动和执行所谓的跑步。对于此类运行,需要确定本地独特的机器人。与网格[IPDPS'16]相反,在欧几里得平面中的每种配置中都不可能。基于Grünbaum的异教共同多边形理论,我们确定了等异共构构型的类别,在这些配置中无法识别这种本地独特的机器人。我们的解决方案结合了两种算法:第一个收集异位配置;它没有任何灯光。第二个适用于非异共形构型;它使用恒定数量的灯光标识本地独特的机器人以开始运行。这些算法交织在$ \ Mathcal {o}(n)$ rounds中解决了收集问题。

This work focuses on the following question related to the Gathering problem of $n$ autonomous, mobile robots in the Euclidean plane: Is it possible to solve Gathering of robots that do not agree on any axis of their coordinate systems (disoriented robots) and see other robots only up to a constant distance (limited visibility) in $o(n^2)$ fully synchronous rounds? The best known algorithm that solves Gathering of disoriented robots with limited visibility assuming oblivious robots needs $Θ(n^2)$ rounds [SPAA'11]. The lower bound for this algorithm even holds in a simplified closed chain model, where each robot has exactly two neighbors and the chain connections form a cycle. The only existing algorithms achieving a linear number of rounds for disoriented robots assume robots that are located on a two dimensional grid [IPDPS'16] and [SPAA'16]. Both algorithms make use of locally visible lights (the LUMINOUS model). In this work, we show for the closed chain model, that $n$ disoriented robots with limited visibility in the Euclidean plane can be gathered in $Θ\left(n\right)$ rounds assuming the LUMINOUS model. The lights are used to initiate and perform so-called runs along the chain. For the start of such runs, locally unique robots need to be determined. In contrast to the grid [IPDPS'16], this is not possible in every configuration in the Euclidean plane. Based on the theory of isogonal polygons by Grünbaum, we identify the class of isogonal configurations in which no such locally unique robots can be identified. Our solution combines two algorithms: The first one gathers isogonal configurations; it works without any lights. The second one works for non-isogonal configurations; it identifies locally unique robots to start runs, using a constant number of lights. Interleaving these algorithms solves the Gathering problem in $\mathcal{O}(n)$ rounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源