论文标题

美国股票中资产分配的深入强化学习

Deep Reinforcement Learning for Asset Allocation in US Equities

论文作者

Alonso, Miquel Noguer i, Srivastava, Sonam

论文摘要

增强学习是一种机器学习方法,涉及以几乎无模型的方式解决动态优化问题,通过在状态和动作空间中最大化奖励功能。该属性使其成为财务问题的令人兴奋的研究领域。资产分配是在考虑风险和交易成本的给定市场状态下最大化奖励的资产的权重,是使用强化学习框架很容易解决的问题。首先,这是预期回报和协方差矩阵的预测问题,然后是回报,风险和市场影响的优化问题。投资者和金融研究人员一直在使用均等优化,最小差异,风险奇偶校验以及同样加权的方法,以及几种使预期回报和协方差矩阵的预测更加稳健的方法。本文展示了强化学习的应用,以为资产分配问题创建无财务模型解决方案,学习使用时间序列和深层神经网络来解决问题。我们在每日重新平衡的美国股票宇宙中的前24个股票的每日数据中证明了这一点。我们使用不同的建筑对美国股票使用深厚的加固模型。我们使用长期的短期内存网络,卷积神经网络和经常性的神经网络,并将其与更传统的投资组合管理进行比较。深厚的增强学习方法比传统方法使用简单的奖励功能显示出更好的结果,并且仅赋予了时间序列的股票。在金融中,没有保证测试错误概括结果的培训。我们可以说,建模框架可以处理时间序列预测和资产分配,包括交易成本。

Reinforcement learning is a machine learning approach concerned with solving dynamic optimization problems in an almost model-free way by maximizing a reward function in state and action spaces. This property makes it an exciting area of research for financial problems. Asset allocation, where the goal is to obtain the weights of the assets that maximize the rewards in a given state of the market considering risk and transaction costs, is a problem easily framed using a reinforcement learning framework. It is first a prediction problem for expected returns and covariance matrix and then an optimization problem for returns, risk, and market impact. Investors and financial researchers have been working with approaches like mean-variance optimization, minimum variance, risk parity, and equally weighted and several methods to make expected returns and covariance matrices' predictions more robust. This paper demonstrates the application of reinforcement learning to create a financial model-free solution to the asset allocation problem, learning to solve the problem using time series and deep neural networks. We demonstrate this on daily data for the top 24 stocks in the US equities universe with daily rebalancing. We use a deep reinforcement model on US stocks using different architectures. We use Long Short Term Memory networks, Convolutional Neural Networks, and Recurrent Neural Networks and compare them with more traditional portfolio management. The Deep Reinforcement Learning approach shows better results than traditional approaches using a simple reward function and only being given the time series of stocks. In Finance, no training to test error generalization results come guaranteed. We can say that the modeling framework can deal with time series prediction and asset allocation, including transaction costs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源