论文标题

非线性低率矩阵恢复问题的全球和本地分析

Global and Local Analyses of Nonlinear Low-Rank Matrix Recovery Problems

论文作者

Bi, Yingjie, Lavaei, Javad

论文摘要

限制的等轴测特性(RIP)是一种众所周知的条件,可确保在低级别基质恢复问题中没有线性测量的局部局部最小值。在本文中,我们介绍了一种名为“绑定差异”特性(BDP)的新型属性,以研究非线性测量的低率矩阵恢复问题。我们首先使用RIP和BDP共同关注Rank-1矩阵恢复问题,为此,我们提出了一个新标准,以证明整个空间中虚假的本地最小值不存在。然后,我们以任意等级分析一般案例,并得出一种条件,以排除在真实解决方案围绕球中具有伪造解决方案的可能性。与RIP上的现有界限相比,开发的条件可实现更强的理论保证。

The restricted isometry property (RIP) is a well-known condition that guarantees the absence of spurious local minima in low-rank matrix recovery problems with linear measurements. In this paper, we introduce a novel property named bound difference property (BDP) to study low-rank matrix recovery problems with nonlinear measurements. Using RIP and BDP jointly, we first focus on the rank-1 matrix recovery problem, for which we propose a new criterion to certify the nonexistence of spurious local minima over the entire space. We then analyze the general case with an arbitrary rank and derive a condition to rule out the possibility of having a spurious solution in a ball around the true solution. The developed conditions lead to much stronger theoretical guarantees than the existing bounds on RIP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源